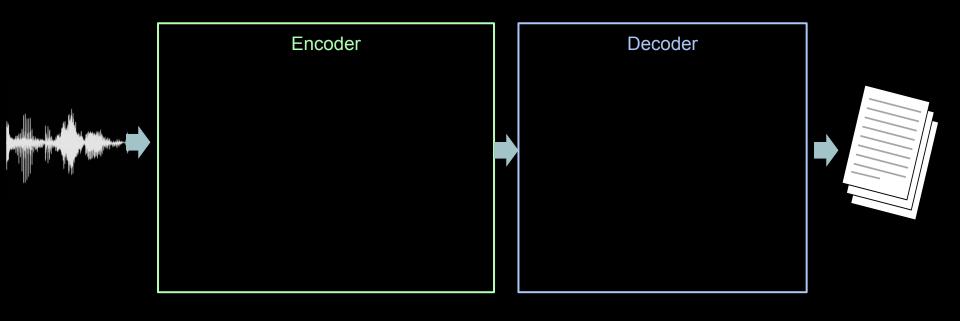
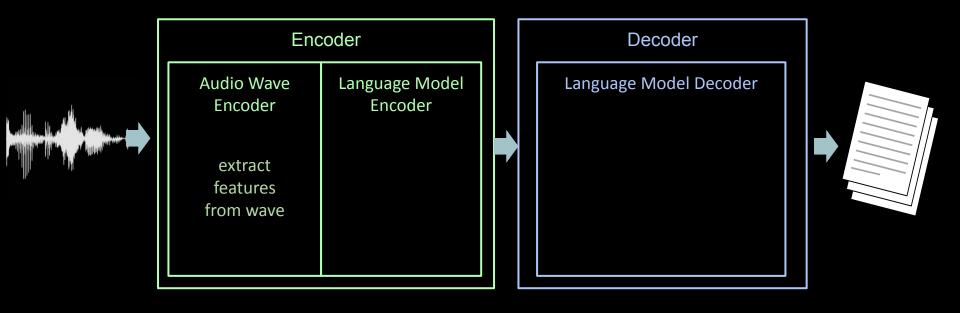
Speech Processing

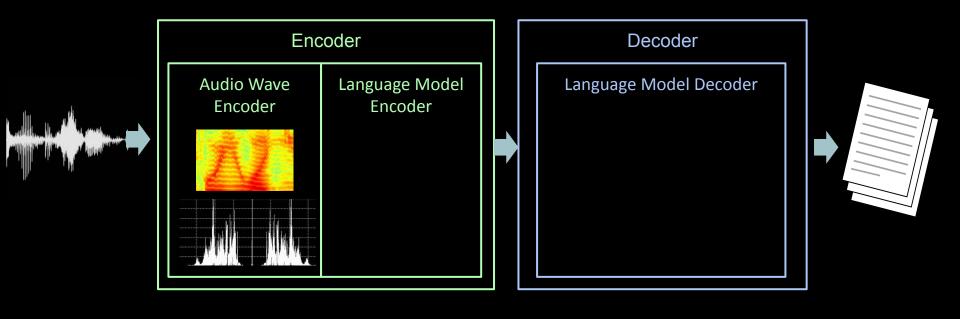
CSE538

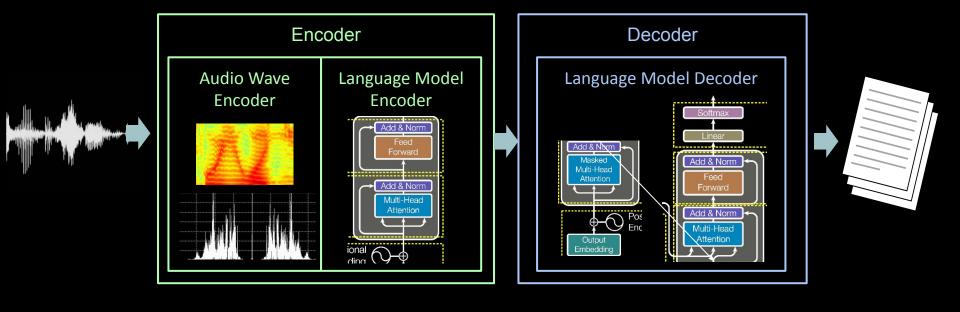
Topics

- Concept: Automatic Speech Recognition (ASR)
- Encoding Waves: Spectrograms
- Wave2Vec
- Whisper





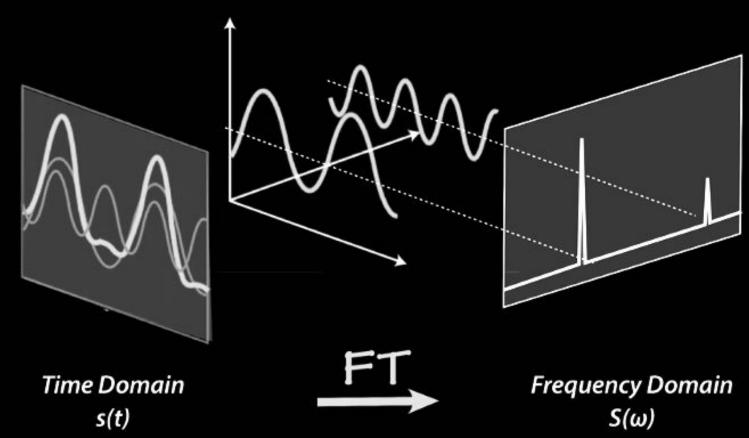




Topics

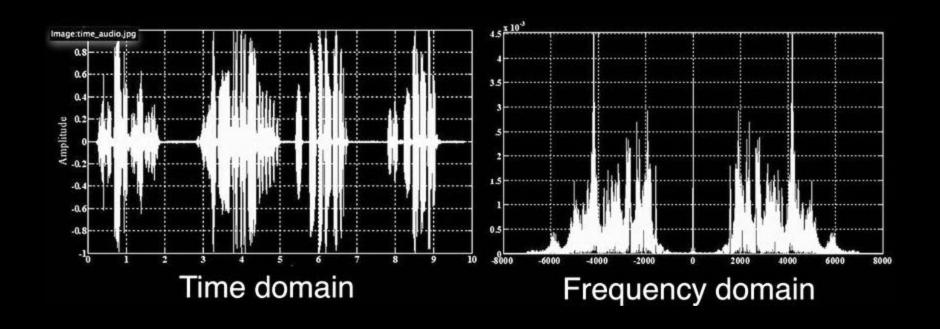
- Concept: Automatic Speech Recognition (ASR)
- Encoding Waves: Spectrograms
- Wave2Vec
- Whisper

Encoding Waves: Fourier Transform

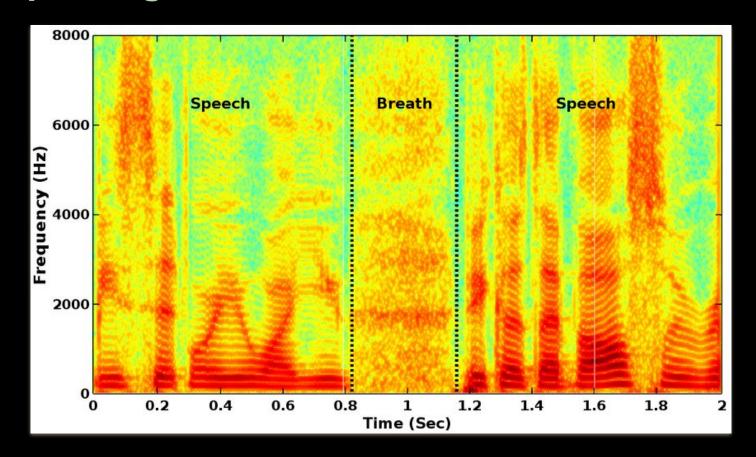


(Choudhary, 2020)

Encoding Waves: Fourier Transform

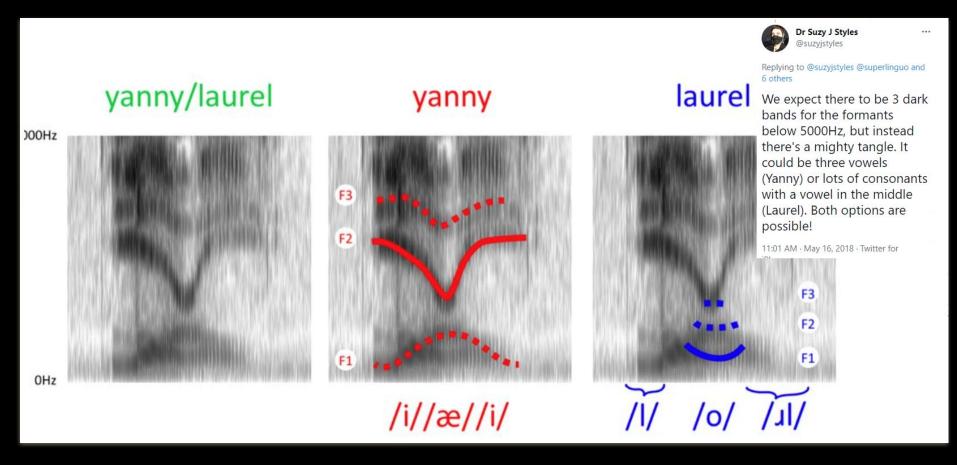


Spectrogram



wiki/File:YannyLaurel.ogq

Yanny Laurel



Spectrogram in Practice: The Mel Spectrum

Motivation: Hearing perception is logarithmic to frequency:

Less ability to distinguish 1 hertz change at higher frequencies

In music: Low A (A0) is 27.5hrtz versus A1 is 55hrtz; A4 is 440 hrtz versus A5 is 880hrtz

$$mel(f) = 1127\ln(1 + \frac{f}{700})$$
 (SLP3-16)

Spectrogram in Practice: The Mel Spectrum

Motivation: Hearing perception is logarithmic to frequency:

Less ability to distinguish 1 hertz change at higher frequencies

In music: Low A (A0) is 27.5hrtz versus A1 is 55hrtz; A4 is 440 hrtz versus A5 is 880hrtz

$$mel(f) = 1127\ln(1 + \frac{f}{700})$$
 (SLP3-16)

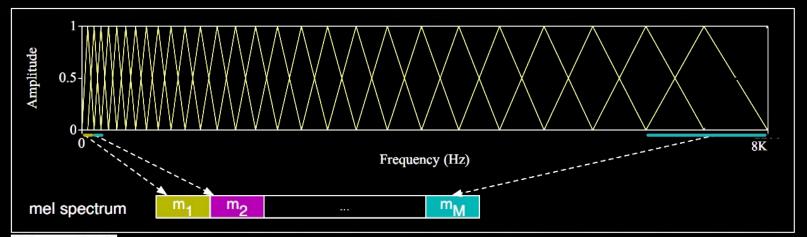


Figure 16.7 The mel filter bank (Davis and Mermelstein, 1980). Each triangular filter, spaced logarithmically along the mel scale, collects energy from a given frequency range.

Topics

- Concept: Automatic Speech Recognition (ASR)
- Encoding Waves: Spectrograms
- Wave2Vec
- Whisper

Wave2Vec Objective

Autoregressive future sample prediction

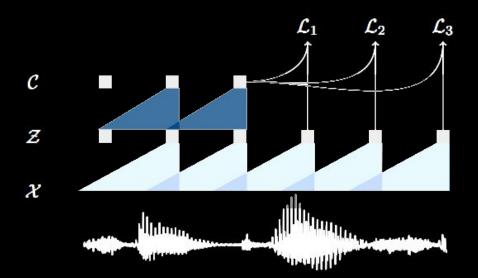


Figure 1: Illustration of pre-training from audio data \mathcal{X} which is encoded with two convolutional neural networks that are stacked on top of each other. The model is optimized to solve a next time step prediction task.

			nov93dev		nov92	
			LER	WER	LER	WER
Deep Speech 2 (12K h labeled speech; Amodei et al., 2016)		_	4.42	-	3.1	
Trainable frontend (Zeghidour et al., 2018a)		_	6.8	-	3.5	
Lattice-free MMI (Hadian et al., 2018)		-	5.66^{\dagger}	-	2.8^{\dagger}	
Supervised transfer-learning (Ghahremani et al., 2017)		-	4.99†	-	2.53^{\dagger}	
4-GRAM LM (Heafie	eld et al., 2013)					
Baseline	_	_	3.32	8.57	2.19	5.64
wav2vec	Librispeech	80 h	3.71	9.11	2.17	5.55
wav2vec	Librispeech	960 h	2.85	7.40	1.76	4.57
wav2vec	Libri + WSJ	1,041 h	2.91	7.59	1.67	4.61
wav2vec large	Librispeech	960 h	2.73	6.96	1.57	4.32
Word ConvLM (Z	Zeghidour et al., 2018b)					
Baseline	_	_	2.57	6.27	1.51	3.60
wav2vec	Librispeech	960 h	2.22	5.39	1.25	2.87
wav2vec large	Librispeech	960 h	2.13	5.16	1.02	2.53
CHAR CONVLM (L	ikhomanenko et al., 2019))				
Baseline	_	_	2.77	6.67	1.53	3.46
wav2vec	Librispeech	960 h	2.14	5.31	1.15	2.78
wav2vec large	Librispeech	960 h	2.11	5.10	0.99	2.43

formance on test (nov92) and validation (nov93dev) in terms of both LER and WER. We evaluate pre-training on the acoustic data of part of clean and full Librispeech as well as the combination of all of them. † indicates results with phoneme-based models.

Wave2vec 2

https://ai.meta.com/blog/wav2vec-20-learning-the-structure-of-speech-from-raw-audio/

Topics

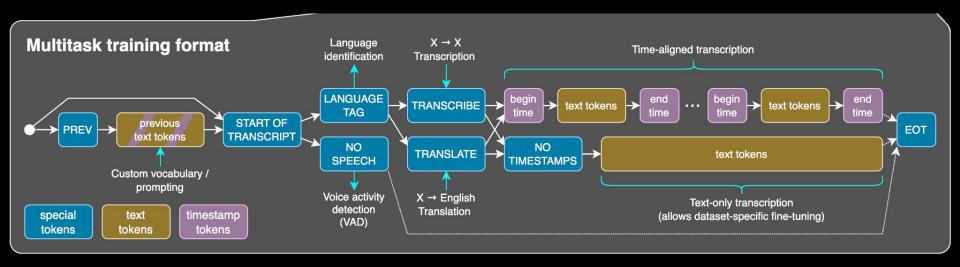
- Concept: Automatic Speech Recognition (ASR)
- Encoding Waves: Spectrograms
- Wave2Vec
- Whisper

Whisper Sequence-to-sequence learning TRANS-EN 0.0 quick brown The CRIBE next-token prediction MLP cross attention self attention self attention cross attention Transformer Transformer **Encoder Blocks Decoder Blocks** self attention cross attention self attention MLP self attention cross attention Sinusoidal **Positional** self attention **Encoding** Learned 2 × Conv1D + GELU **Positional Encoding** TRANS-CRIBE SOT EN The quick

Log-Mel Spectrogram

Tokens in Multitask Training Format

Whisper



Whisper

Model	Layers	Width	Heads	Parameters
Tiny	4	384	6	39M
Base	6	512	8	74M
Small	12	768	12	244M
Medium	24	1024	16	769M
Large	32	1280	20	1550M

Table 1. Architecture details of the Whisper model family.

Dataset	wav2vec 2.0 Large (no LM)	Whisper Large V2	RER (%)
LibriSpeech Clean	2.7	2.7	0.0
Artie	24.5	6.2	74.7
Common Voice	29.9	9.0	69.9
Fleurs En	14.6	4.4	69.9
Tedlium	10.5	4.0	61.9
CHiME6	65.8	25.5	61.2
VoxPopuli En	17.9	7.3	59.2
CORAAL	35.6	16.2	54.5
AMI IHM	37.0	16.9	54.3
Switchboard	28.3	13.8	51.2
CallHome	34.8	17.6	49.4
WSJ	7.7	3.9	49.4
AMI SDM1	67.6	36.4	46.2
LibriSpeech Other	6.2	5.2	16.1
Average	29.3	12.8	55.2

Table 2. Detailed comparison of effective robustness across various datasets. Although both models perform within 0.1% of each other on LibriSpeech, a zero-shot Whisper model performs much better on other datasets than expected for its LibriSpeech performance and makes 55.2% less errors on average. Results reported in word error rate (WER) for both models after applying our text normalizer.

Current Challenges for ASR

- Live simultaneous transcription
- Single-channel multi-speaker transcription ("Cocktail room problem")
 - o diarization: task of identifying speakers
- Multilingual transcription

